CAN@NICAL

LXD

- next generation system container manager.

Paul Sim
Senior Technical Account Manager
paul.sim@canonical.com

Agenda

e Virtualization
o XD &LXC

e LXD vs Docker
e LXD basic

e LXD with MAAS/Juju

CAN@NICAL

Virtualization

Virtual Virtual Virtual
Machine Machine Machine
Application Application Application
Application Application Application
| KernelJ | Kernel | | Kernel J
o o
D, g
s | Hypervisor =
c c
ok 2
3] o
s | Hardware S

Type 1, Type 2

. NameSpace NameSpace NameSpace
‘| container |::| container |:| Container [:
Application Application Application
Application Application Application
Operating System
Hardware
Lightweight
virtualization

CAN@NICAL

Namespace

Currently, Linux implements six different types of namespaces. The purpose of each
namespace is to wrap a particular global system resource in an abstraction that makes it
appear to the processes within the namespace that they have their own isolated instance of
the global resource. One of the overall goals of namespaces is to support the
implementation of containers, a tool for lightweight virtualization (as well as other
purposes) that provides a group of processes with the illusion that they are the only
processes on the system.

1. Mount namespaces (CLONE_NEWNS, Linux 2.4.19) isolate the set of filesystem mount
points seen by a group of processes. Thus, processes in different mount namespaces can
have different views of the filesystem hierarchy.

One use of mount namespaces is to create environments that are similar to chroot jails.
However, by contrast with the use of the chroot() system call, mount namespaces are a
more secure and flexible tool for this task. Other more sophisticated uses of mount
namespaces are also possible. For example, separate mount namespaces can be set up in a
master-slave relationship, so that the mount events are automatically propagated from one
namespace to another; this allows, for example, an optical disk device that is mounted in
one namespace to automatically appear in other namespaces.

CAN@NICAL

Namespace

2. UTS namespaces (CLONE_NEWUTS, Linux 2.6.19) isolate two system
identifiers—nodename and domainname—returned by the uname() system call; the names
are set using the sethostname() and setdomainname() system calls. In the context of
containers, the UTS namespaces feature allows each container to have its own hostname
and NIS domain name.

3. IPC namespaces (CLONE_NEWIPC, Linux 2.6.19) isolate certain interprocess
communication (IPC) resources, namely, System V IPC objects and (since Linux 2.6.30) POSIX
message queues. The common characteristic of these IPC mechanisms is that IPC objects
are identified by mechanisms other than filesystem pathnames. Each IPC namespace has its
own set of System V IPC identifiers and its own POSIX message queue filesystem.

4. PID namespaces (CLONE_NEWPID, Linux 2.6.24) isolate the process ID number space. In
other words, processes in different PID namespaces can have the same PID.

5. Network namespaces (CLONE_NEWNET, started in Linux 2.4.19 2.6.24 and largely
completed by about Linux 2.6.29) provide isolation of the system resources associated with
networking. Thus, each network namespace has its own network devices, IP addresses, IP
routing tables, /proc/net directory, port numbers, and so on.

6. User namespaces (CLONE_NEWUSER, started in Linux 2.6.23 and completed in Linux 3.8)

isolate the user and group ID number spaces. In other words, a process's user and group IDs
can be different inside and outside a user namespace.

CAN@NICAL

Namespace

ubuntu@ubuntu:~#

root 0.0 0.0 99536 55367? Ss 07:48 0:00 [Ixc monitor] /var/lib/Ixd/containers c1

100000 0.0 0.0 33524 4144? Ss 07:48 0:00 _/sbin/init

100000 18358 0.0 0.0 19488 168? S 07:48 0:00 _ upstart-udev-bridge --daemon

100000 0.0 0.0 49280 3184? Ss 07:48 0:00 _ /lib/systemd/systemd-udevd --daemon

ubuntu@ubuntu:~#

lrwxrwxrwx 1 root root 0 May 24 07:58 cgroup -> cgroup:[4026531835]
lrwxrwxrwx 1 root root 0 May 24 07:58 ipc -> ipc:[4026531839]
lrwxrwxrwx 1 root root 0 May 24 07:58 mnt -> mnt:[4026531840]
lrwxrwxrwx 1 root root 0 May 24 07:58

lrwxrwxrwx 1 root root 0 May 24 07:58 pid -> pid:[4026531836]
lrwxrwxrwx 1 root root 0 May 24 07:58

lrwxrwxrwx 1 root root 0 May 24 07:58 uts -> uts:[4026531838]
ubuntu@ubuntu:~#

lrwxrwxrwx 1 100000 100000 0 May 24 07:51 cgroup -> cgroup:[4026532327]
lrwxrwxrwx 1 100000 100000 0 May 24 07:48 ipc -> ipc:[4026532269]
lrwxrwxrwx 1 100000 100000 0 May 24 07:48 mnt -> mnt:[4026532267]
lrwxrwxrwx 1 100000 100000 0 May 24 07:48

lrwxrwxrwx 1 100000 100000 0 May 24 07:48 pid -> pid:[4026532270]
lrwxrwxrwx 1 100000 100000 0 May 24 07:48

lrwxrwxrwx 1 100000 100000 0 May 24 07:48 uts -> uts:[4026532268]
ubuntu@ubuntu:~#

lrwxrwxrwx 1 100000 100000 0 May 24 07:58 cgroup -> cgroup:[4026532327]
lrwxrwxrwx 1 100000 100000 0 May 24 07:58 ipc -> ipc:[4026532269]
lrwxrwxrwx 1 100000 100000 0 May 24 07:58 mnt -> mnt:[4026532267]
lrwxrwxrwx 1 100000 100000 0 May 24 07:58

lrwxrwxrwx 1 100000 100000 0 May 24 07:58 pid -> pid:[4026532270]
lrwxrwxrwx 1 100000 100000 0 May 24 07:58

lrwxrwxrwx 1 100000 100000 0 May 24 07:58 uts -> uts:[4026532268]

CAN@NICAL

Linux Container

Namespace Namespace Namespace
CentOS Ubuntu Precise Ubuntu Trusty
apache tomcat MongoDB
MySQL Rails Nginx

running env running env running env

Namespace

-UTS .

o Control group Linux Kernel

- Network

- User

Hardware

CAN@NICAL

LXD & LXC

REST API

l

LXD daemon

LXC Container

LXC Container

LXC Container

Host

l

LXD daemon

LXC Container

LXC Container

LXC Container

Host

LXD isn't a rewrite of LXC, in fact it's building on top of LXC to provide a new, better user
experience. Under the hood, LXD uses LXC through liblxc and its Go binding to create and

manage the containers.
It's basically an alternative to LXC's tools and distribution template system with the
added features that come from being controllable over the network.

CAN@NICAL

LXD vs Docker

LXD vs. Docker

N\

LXD docker
Machine Management Software Distribution
Doesn't care about content Cares about what is running
Can host docker instances Can use LXD for goods

Share underlying kernel capabilities

2016 LXD Container Hypervisor 6

LXD : a machine container
Docker : an application container

https.//www.slideshare.net/danialbehzadi/Ixd-container-hypervisor-66045556

CAN@NICAL

LXD Basic

e Installation
o $sudo apt-get install [xd [xd-client

o $sudo aptinstall zFsutils-linux #optional

e Initialization
o Ssudo Ixd init

e Launch a container
o Ssudo Ixc launch ubuntu:14.04 c1

e Manage a container

o S$sudo Ixc stop|start|restart|pause|delete <c_name> [--force|--stateful]

CAN@NICAL

LXD Basic

e Configurations
o $sudo Ixc config edit|show <c_name> [--expanded]
o Live config change

m S$sudo Ixc config set|unset <c_name> <key> <value>
m e.g)$sudo Ixc config set c1 limits.cpu.allowance 10%

o For profile
m S$sudo Ixc profile edit|show <profile_name>
o In default, Ixc config doesn’t show configurations inherited by
profiles. Use --expanded option to see it.
https.//github.com/Ixc/Ixd/blob/master/doc/configuration.md

e Image
o $sudo Ixcimage list

o To see repositories
m S$sudo Ixc remote list

o Toimport/download an image into local
m S$Ssudo Ixcimage copy ubuntu:16.04 local:
m S$sudo Ixcimage copy images:debian/8/amd64 local:

CAN@NICAL

https://github.com/lxc/lxd/blob/master/doc/configuration.md

LXD Basic

e Creating a custom Image from a container

1) $sudo Ixc stop c1
2) S$sudo Ixc publish c1 --alias my-image
3) S$sudo Ixcimage list

e Remote LXD

1) Allow remote connection
m S$sudo Ixc config set core.https_address [::]:8443

2) on working host

m S$sudo Ixc remote add <remote_name> <IP>
m e.g) $sudo Ixc remote add ubuntu-6 172.30.1.119

o Working with the remote LXD
m S$sudo Ixc list ubuntu-6:
m S$sudo Ixc start ubuntu-6:c1

o Container migration

m S$sudo Ixc stop ubuntu-6:c1
m Ssudo [xc move c1 ubuntu-6:c1

CAN@NICAL

LXD with MAAS/juju

e MAAS

o Metal As a Service.
o Baremetal provisioning tool

o https://maas.io/

e juju
o Application modelling tool.
o Application deployment, configuration and scale
o https//jujucharms.com

CAN@NICAL

https://maas.io/
https://jujucharms.com

LXD with MAAS/juju

MAAS/Cloud
1) Request a machine/

3) allocating a machine

2) provisioning a machine/VM

Juju
—— Baremetal
4) application deployment LXC Container
Container creation
Package ~a -
installation/configurations LXC Container
LXC Container

CAN@NICAL

